看看小说网

手机浏览器扫描二维码访问

第二十章 欧几里得算法(第1页)

欧几里得学生卡农对欧几里得说:“如果可以可靠的求出两个数字的最大公约数?”

欧几里得说:“用辗转相除法就可以,如果求a和b的最大公约数,如果a大于b,那就是a除以b,然后得到余数,然后再让除数b除以余数,然后一直让除数除以余数,最后余数为0的时候,得到的除数就是a和b的最大公约数。”

卡农说:“假如说1997和615这两个数字。”

欧几里得说:“1997除以615,等于3余出152。”

卡农说:“然后怎么求?”

欧几里得说:“除数除以余数,615除以152等于4余7.”

卡农说:“然后152除以7等于21余5.”

欧几里得接着说:“没错,然后7除以5,等于1余2.”

卡农说:“5除以2,等于2余1.”

欧几里得说:“2除以1,等于2余0.”

卡农说:“不能再往下了,余数已经为0,所以1997和615的最大公约数为1.”

欧几里得说:“所以说,相当于没有最大公约数。”

在以上基础上,后来数学中发展了环的概念,整环R是符合一下接个要求的:

1、A关于加法成为一个Abel群(其零元素记作0);

2、乘法满足结合律:(a*b)*c=a*(b*c);

3、乘法对加法满足分配律:a*(b+c)=a*b+a*c,(a+b)*c=a*c+b*c;

如果环A还满足以下乘法交换律,则称为“交换环”:

4、乘法交换律:a*b=b*a。

如果交换环A还满足以下两条件,就称为“整环”(integraldomain):

5、A中存在非零的乘法单位元,即存在A中的一个元素,记作1,满足:1不等于0,且对任意a,有:e*a=a*e=a;

6、ab=0=>a=0或b=0。

而后来也引入了欧几里得整环的概念,这是抽象代数中,这是一种能作辗转相除法的整环。凡欧几里得整环必为主理想环。

喜欢数学心请大家收藏:()数学心

农夫是概念神?三叶草了解一下!  混迹娱乐圈的日子  我的徒弟不对劲  在下潘凤,字无双  重生在宝可梦,我的后台超硬  国运:拥有多重身份的我很合理吧  至尊战皇  译文欣赏:博伽瓦谭  宗门全是美强惨,小师妹是真疯批  我一枪一剑杀穿大陆  穿成商户女摆烂,竟然还要逃难!  暗无  摊牌了,我爹是绝顶高手!  穿到八零,我自带锦鲤系统!  大明:开局气疯朱元璋,死不登基  快穿之炮灰得偿所愿  哦豁!虐文炮灰不干了!  永恒大陆之命运  玄灵界都知道我柔弱可怜但能打  新人驾到  

热门小说推荐
伪我独尊大雁捕蝉

伪我独尊大雁捕蝉

一种能帮忙泡妞的异能会给主角的人生带来怎样的奇遇?很简单,进来一看便知!...

世界第一宠:财迷萌宝,超难哄

世界第一宠:财迷萌宝,超难哄

本书又名你是我戒不掉的甜秦南御第一次遇见纪微甜,丢了重要信息。秦南御第二次遇见纪微甜,丢了相亲对象。秦南御第三次遇见纪微甜,丢了人如果有人问他,最厌恶的异性类型是什么样的,他会毫不犹...

武林风流传(多情皇帝)

武林风流传(多情皇帝)

中原武林大地北有天芳谱七朵名花,南有美人图十二美人!武林之中,侠女成风,我一出世,无一落空。皇帝本多情,情深意更浓,武林有南北,皇帝就是我。...

上门狂婿

上门狂婿

被丈母娘为难,被女神老婆嫌弃!都说我是一无是处的上门女婿!突然,家族电话通知我继承亿万家财,其实我是一个级富二代...

遇见,傅先生

遇见,傅先生

(出版名繁星告白时)父母偏心,闺蜜陷害,走投无路之下,叶繁星嫁给了坐在轮椅上的傅先生。他会教她弹钢琴,送她花,将她宠成了这个世界上最幸福的人。某天,同学聚会,她被人嘲笑,说她老公是个残废,他风度翩翩出现,让所有笑话她的人哑口无言。在人生最灰暗的时光里,有他牵引着她积极向阳而生,从而有了灿烂的人生。遇见你真好,我的傅先生。...

每日热搜小说推荐